Hidden Surface Removal

April 27, 2006

Assignment 4 Hints

- Ed Angel 5.9.2:

$\frac{-2 \text { far }}{\text { right -left }}$	0	$\frac{\text { right }+ \text { left }}{\text { right }- \text { left }}$	0
0	-2far	top + bottom	0
	top-bottom	top-bottom	
0	0	- far + near	2 far * near
0	0	far-near -1	far-near 0

- Shear or Translation?
- Using only integers in Bresenham's?

Hidden Surface Removal

- Object-space algorithms:
- Back-face culling (removal)
- Depth sorting and Painter's algorithm
- Image-space algorithm:
- Z Buffer!
- Fast, but requires more memory.

Back-Face Culling

- For convex objects, we can't see the back faces.
- But, how do we determine the back faces?

Removing Back-Faces

Idea: Compare the normal of each face with the viewing direction

Given n, the outward-pointing normal of F
foreach face F of object

$$
\text { if }(n \cdot v>0)
$$

throw away the face

Fixing the Problem

We can't do view direction clippingjust anywhere!

Downside: Projection comes fairly late in the pipeline. It would be nice to cull objects sooner.
Upside: Computing the dot product is simpler. You need only look at the sign of the z .

2/12/2003

Culling Plane-Test

Here is a culling test that will work anywhere in the pipeline.
Remove faces that have the eye in their negative half-space. This requires computing a plane equation for each face considered.

$$
\left[\begin{array}{cccc}
n_{x} & n_{y} & n_{z} & -d
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=0
$$

We'll will still need to compute the normal (How?).
But, we don't have to normalize it. (How do we go about computing a value for d ?)

Painter's Algorithm

- Draw from back to front.
- No solution for:
- Cyclic ordering
- Intersecting surfaces

Z Buffer

- At each pixel, store the Z of the frontmost surface.
- If the new Z is larger, it's occluded.
- If the new Z is smaller, then:
- Draw the new surface
- Update the Z

Other Algorithms

- Scan-line algorithm: See Section 7.11 of Ed Angel's book (4 ${ }^{\text {th }}$ Ed).
- For more advanced research in this area, see:
- Chen and Wang, SIGGRAPH 1996.
- Snyder and Lengyel, SIGGRAPH 1998.

from the previous lecture...

Projection Matrix

$\left[\begin{array}{c}w x^{\prime} \\ w y^{\prime} \\ w z^{\prime} \\ w\end{array}\right]=\left[\begin{array}{cccc}\frac{-2 \text { far }}{\text { right }- \text { left }} & 0 & \frac{\text { right }+ \text { left }}{\text { right }- \text { left }} & 0 \\ 0 & \frac{-2 \text { far }}{\text { top }- \text { bottom }} & \frac{\text { top }+ \text { bottom }}{\text { top }- \text { bottom }} & 0 \\ 0 & 0 & \begin{array}{|cc}-\frac{\text { far }+ \text { near }}{\text { far }- \text { near }} & \frac{2 \text { far }{ }^{*} \text { near }}{\text { far }- \text { near }} \\ 0 & 0\end{array} \frac{-1}{0}\end{array}\right]\left[\begin{array}{c}x \\ y \\ z \\ 1\end{array}\right]$

Range of Z

- If $Z=$ near, what is Z^{\prime} ?
-1
- If $Z=$ far, what is Z '?

1

- Does Z' change linearly with Z?
- No!
$-Z^{\prime}=w Z^{\prime} / w=\left(a^{*} Z+b\right) / Z=a+b / Z$

Z Resolution

- Since screen Z^{\prime} is expressed in the form of $a+b / Z$, most of the Z resolution is used up by the Z's closer to the near plane.
- So, what does this mean?
- You shouldn't set zNear to be very close to the eye position.

Notice the change in the range of Z after transformation (in NDC space) for the original Z (in eye space) between 200 and 400 (marked by the Red boxes).

Why Not Linear?

- To make it linear, we will have to make WZ' $=\mathrm{a}{ }^{*} Z^{2}+\mathrm{bZ}$ (so that $Z^{\prime}=W Z^{\prime} / W=$ a*Z + b)
- But that's impossible with the perspective matrix...

Linear Z Buffer or W Buffer

- Wait! Why is linear Z impossible under perspective projection? Can't we simply ignore the divide-by-w step for Z ?
- Yes, but we no longer have the nice math of the homogeneous coordinates

$$
\begin{aligned}
& {\left[\begin{array}{c}
w x^{\prime} \\
w y^{\prime} \\
w z^{\prime} \\
w
\end{array}\right]=\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right], \quad\left[\begin{array}{c}
w x^{\prime} \\
w y^{\prime} \\
z^{\prime} \\
w
\end{array}\right]=?} \\
& \text { Division by w }
\end{aligned}
$$

